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The purpose of this paper is to show that the basic results concerning commuta- 
tive rings constructed from prime ideals in a given commutative ring via quotient 
rings and rings of fractions can be generalized to differential algebra. However, 
some care must be exercised, since it is not true, for example, that M is a maximal 
differential ideal in a differential ring A if and only if A/h4 is a differential field. 
The invalidity of this result is a consequence of the observation that some differen- 
tial rings have maximal differential ideals which are not prime [l, p. 3101. Also, the 
radical of a differential ideal may fail to be a differential ideal [4, p. 121 so that for 
some differential rings A, the reduced ring A/N, where N is the nilradical of A, is 
not even a differential ring. 

We begin by generalizing some earlier results for ordinary differential rings and 
obtaining some new ones for arbitrary differential rings. We then present the basic 
results for differential rings constructed via quotient rings and rings of fractions. 
The importance of these results is that they can play the same central role in 
differential algebra as do the corresponding results in commutative algebra. We 
conclude by giving some indication of the possible application of our results to 
problems in differential algebra. 

Several of the results were simplified or otherwise improved through useful 
conversations with Professors Ellis Kolchin, Jerald Kovacic and Phyllis Cassidy, 
and we wish to take this opportunity to express our gratitude. In particular, 
Professor Kolchin suggested the proof of Lemma 1.13. 

1. Preliminaries 

Throughout the paper, A will denote a commutative ring with identity and 
zl = (61, . . . . 6,) a set of derivation operators on A, making A a differential ring. 
The free commutative semigroup generated by d will be denoted by 0, so that 0 is 
the set of derivative operators on A. For any subset X of A, r(X) will denote the 
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radical of X, i.e. the intersection of all prime ideals in A containing X. Any 
unexplained notation or terminology will be standard, as in [5] or [8]. 

A subset X of A will be called differential if 6(X)CX for each BE d. For any 
subset X of A we define the differential of X to be the set X, = {SEA / BXE X for all 
6~ 0). Some of the properties of the operator X-X, are given in the following. 

Proposition 1.1. (i) For any subset X of A, X, C X and XAd =X,. 
(ii) For any subsets X and Y of A with XC Y, X, C Y4. 

(iii) For any subset X of A, X=X, if and only if X is differential. 
(iv) For any family of subsets { Xi)i,, of A, 

and y, (X,)AC 

(v) If B is any differential ring and f: A -, B is any differential ring homo- 

morphism, then for any subsets X of A and Y of B, f -‘( YA) = f -‘( Y), and f(XA) C 
f(X), with equality if f is injective. 

Proof. Immediate from the definition. 

It follows that for any subset X of A, XA is the largest differential subset of A 
contained in X. Furthermore, the collection of differential subsets of A is a com- 
plete lattice, and a differential ring homomorphism induces two lattice homo- 
morphisms via inverse and direct image. 

Before we present a lemma which will be useful in proving some of the algebraic 
properties of the operator X-X,, we observe that 0 has the following inductive 
property. If S is a subset of 0 such that 

(1) 1 ES; and 
(2) for all 0~ 0, if 0’~ S for all 0’E 0 with 0’ 10 (i.e. 0’ dividing 0 in 0) and 8’# 0, 

then BE S; 
then S = 0. 

For any subset X of A, let U(X) = (XE X 1 there exists y E X with xy = 1). Thus if 
B is a subring of A, U(B) is the set of invertible elements in B. 

Lemma 1.2. if B is a subring of A, then U(BA) = U(B) f~ BA. 

Proof. Clearly MB,) C U(B) n Bd, so let XE B be such that 8xE B for all 8 o 0 and 
suppose that xy= 1 for some YE B. We need to show that Bye B for each BE 0. We 
may assume that B# 1 and that for each 0’E 0 with 0’ 18 and B’# 6, B’yE B. It 

follows that 0= 6(xy) =x0y+ C ($Yx0”y, the sum taken over all pairs (0: 0”) in 
0x0 with 8= 8’8” and B’# 1, as in [8, p. 601. From this it follows that 
ey = -y( C ($&xfYy) and hence 0y E B. 

Proposition 1.3. Let X be a subset of A. If X is any of the following, the same is 
true of XA . 
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(i) A subring 0fA. 

(ii) An ideal ofA. 
(iii) A semi-local subring of A (i.e. a subring having finitely many maximal 

ideals). 
(iv) A local subring of A. 
(v) A subfield of A. 

Proof. This follows from Lemma 1.2 and from Proposition 1.4 [6, p. 2411. 

Proposition 1.4. Suppose that A has characteristic n > 0, and let P be a prime ideal 
in A. Then r(Pd) = P. 

Proof. Since P is a prime ideal and Pd C P by Proposition 1.1(i), we see that 
r(PJ C P. However, for any a E P, one checks easily that a”E Pd. 

Proposition 1.5. Suppose that A has characteristic zero, let S be the multiplicative 
subset of A consisting of all n. 1 where n is a positive integer, and let P be a prime 
ideal in A. 

(i) Zf Pfl S# 0, then r(P,) = P. 
(ii) Zf PnS=O, then PA is a prime ideal in A. 

Proof. (i) If PtlS#0, there is a prime integer p such that pa 1 E P, and so apE PA 
for any a E P, showing PCr(Pd). But since r(PJc P for any prime ideal P, the 
result follows. 

(ii) First observe that since 0 is the free commutative semigroup generated by 

A = (61, . . ..&?l}. we have that OGN”’ where N denotes the natural numbers. It 
follows that there is an injection O+ N x N”’ induced by the mapping ord : 0 + N, 
where for any B= naed cY@)E 0, ord 8= CJEd e(6). The lexicographical order on 
N x Nm then induces a total ordering on 0. Now suppose that a, b E A are such that 
a .$ Pd and b C$ Pd. Then there exist 6’~ 0 and 8” E 0 such that &a BP, &‘b c P, Ba E P 
for all O< 0’ and 86 E P for all 0 < 8”. Now consider 

8W(ab) = (*~“)8’afYb + c ( e~“)i3,aB2b, 

the sum taken over all pairs (O,, 19,) in 0 x 0 with 8,& = 8’0” and 19, # 8’. But for any 
such pair (Oi, 8,), either 8, < 8’ or 0, > 8’, in which case 8,< 8”. It follows that 

&a&b E P, 

where 0, #8’, and since PnS=O, (‘~“)B’afY’b~ P, so that ab6 Pd, showing P. is a 
prime ideal in A. 

Corollary 1.6. Suppose that A contains the rational numbers Q. Zf P is a prime ideal 
in A, so is Pd. Similarly if Z is a radical ideal in A, so is Z, . 
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Proof. If Q CA, then for any positive integer n, n - 1 is invertible in A, so that if P is 
a prime ideal in A, PJ is prime by Proposition 1.5. If I is a radical ideal in A, I is an 
intersection of prime ideals, so that 1, is a radical ideal as well by Proposition 1.1 (iv). 

Lemma 1.1. Let P be a prime ideal in A and let S be a multiplicative subset of A 
such that Pn S = 0. Then in the differential ring S-IA we have (S-‘P)J = S-‘P,. 

Proof. Let a/se S-‘PA; we will show that &a/s) E S-‘P for all BE 0. For 8= 1 this 
is immediate, so suppose that B’(a/s)ES-‘P for all B’E 0, 8’ / 6, 6’#0. Since 
(a/s). (s/l) = a/l in S-IA, we have 

B(a/s)= [8(0/1)- C (:,)&(a/s). &Y(s/l)](L/s), 

the sum taken over all pairs (0: 0”) with 0= 19’8” and 0’# 8. Since 0(x/i) = &/I for 
all x E A and 0 E 0, we see by (*) that @a/s) E S-‘P. On the other hand, if we assume 
that &a/s) E S-‘P for each BE 0, then again by (*) we see that Ba/l E S-‘P. Since P 
is prime and disjoint from S, it follows that Ba E P, so that a/s E S-‘PJ. 

As in [a], we say that A is special if for each prime ideal P in A, PA is also a prime 
ideal in A. It follows from Corollary 1.6 that any differential ring containing 
the rational numbers Q is special. We record the following propositions concerning 
special differential rings. 

Proposition 1.8. The following are equivalent. 
(1) A is special. 
(2) Every minimal prime divisor of a differential ideal in A is a differential ideal 

in A. 
(3) The radical of a differential ideal in A is a differential ideal in A. 
(4) If I is a differential ideal in A and S a multiplicative subset of A disjoint from 

I, then every ideal in A maximal among differential ideals in A which contain I and 
are disjoint from S is a prime ideal in A. 

(5) If I is a radical ideal in A, then I, is also a radical ideal in A. 
(6) IfS={n. 1 (n>O)andPisaprimeidealinAsuchthatPnS+0, thenP4=P. 

Proof. Follows from Proposition 2.1 [7, p. 3801. 

Proposition 1.9. (i) If A is special and Z is any difSerentia1 ideal in A, then A/I is 
special. 

(ii) If A is special and S is any multiplicative subset of A, then S-IA is special. 
(iii) A is special if and only if A p is special for each prime ideal P in A. 
(iv) If Al, . . . . A,, is any finite family of differential rings and A = A, x a.. x A,, 

then A is special if and only if each Ai is special. 
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Proof. Follows from Propositions 1.6, 1.8, 1.10 and Corollary 1.9 [6, pp. 242-2431. 

Recall from [7] that an ideal Q in A is called quasi-prime if there is a multiplicative 
subset S of A such that Q is maximal among differential ideals in A disjoint from S. 
It is clear from [5, Prop. 1, p. l] that the notion of a quasi-prime ideal in a differen- 
tial ring is a generalization of the notion of a prime ideal in a commutative ring. 
Moreover, it is a better generalization than the usual notion of a prime differential 
ideal for several reasons. First, every prime differential ideal is a quasi-prime ideal. 
Moreover, every maximal differential ideal is a quasi-prime ideal (but is not 
necessarily a prime differential ideal as we have noted above). Furthermore, in 
many of the cases usually considered in differential algebra, such as when the 
differential ring contains the rational numbers, quasi-prime ideals are the same as 
prime differential ideals. Finally, prime ideals and quasi-prime ideals are closely 
related in many ways, as the following shows. 

Proposition 1.10. Let Q be an ideal in A. The following are equivalent. 
(1) Q is quasi-prime. 
(2) Q is primary and Q = r(Q)d. 
(3) r(Q) is prime and Q = r(Q)d. 
(4) There is a prime ideal P in A such that Q = Pd. 

Proof. Follows from Proposition 2.2 [7, p, 3801. 

Denote by Speed A and Quas A the sets of prime differential ideals and quasi- 
prime ideals in A respectively. We have the following. 

Corollary 1.11. There is a natural surjection A : Spec A +Quas A and a natural 
injection r : Quas A -+Spec A such that A . r(Q) = Q for all QE Quas A. If the 
characteristic of A is positive, or if the characteristic of A is zero and each nonzero 
prime ideal in A contains an element p + 1 where p is a prime integer, then A (and 
hence r) is a bijection. If A contain the rational numbers, then Quas A = Speed A. 

Proof. The existence of A and r follows immediately from Proposition 1.10. The 
naturality of A and r means that for any differential ring homomorphism f: A --+ B 
there are commuting diagrams of mappings 

f-’ 
Spec B - Spec A 

f-’ 
Quas B - Quas A 

4 f_, 4 and 4 f_, ‘I 
Quas B - Quas A Spec B - Spec A 

i.e. for any prime ideal P in B, f -l(P)d = f -‘(PA) and for any quasi-prime ideal Q in 
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B, f-‘(r(Q)) = r(J-i(Q)). The first follows from Proposition 1. I(v) and the second is 
immediate. The remainder follows from Propositions 1.4 and 1.5 and Corollary 1.6. 

The following result is immediate from Propositions 2.6 and 2.7 [7, pp. 382-3831. 

Proposition 1.12. (i) If I is a differential ideal in A, there is a one-to-one corres- 
pondence between quasi-prime ideals in A/I and quasi-prime ideais in A which 
contain I. 

(ii) If S is a multiplicative subset of A, there is a one-to-one correspondence 
between quasi-prime ideals in S-IA and quasi-prime ideals in A disjoint from S. 

Lemma 1.13. Let (y,, . . . , y,) be a finite family of difSerential indeterminates over A 
and let B denote the differential polynomial ring A ( y,, . . . , y, ) . Then for any ideal I 
in A, (IB), = 1, B. 

Proof. We first claim that the set W of differential monomials in B can be totally 
ordered so that for any 0 E 0, t9# 1, any ME W and any term aN in OM, where 
NE Wand 0 f a E A, M< N. To see this, first observe that the set D of all derivatives 
Byj, where BEG, j=l,... n, can be totally ordered so that for any u ED and any 
BEG, us& by [8, Lemma 15, p. 491. Then any ME W can be written as a finite 
product of factors of the form urn, where u ED and m > 0, and the total ordering 
of D can be extended to a total ordering of W as follows. First, we will write any 
suchmonomiaIME WasM=n,k=,(ui)“‘whereu,>...>ukandmj>Ofori=1,...,k. 
Then if M’E W, say M’=nfl, (u;)“’ where u;>--->u& and m:>O for i= 1, . . ..k’. 
we will say that M’ has higher rank than M if there is a positive integer j such that 
for all i<j, u,=u: and m;=m:, and either Uj<uj, or u; = u; and m,<mj. Then it 
is immediate that for any 0e 0,8# 1, and any ME W, the monomial of each term of 
8M has higher rank than M. 

It is clear that Z, BC (IB), . If FE B - 1, B, then we can assume that F= aM+ G, 
where ME W, ae A -Id, GE B, and the monomial of each term of G has higher 
rank than M (relative to the total order defined above). Since ael,, there is some 
f3E 0 with ea g I. Therefore OF= (Oa)M+ C (,$)e’aO”M+ BG, the sum taken over all 
pairs (&, 0”) with 8= 0’0” and B”# 1. But the monomial of each term of VM has 
higher rank than M, and similarly the monomia1 of each term of BG has higher rank 
than M. Therefore BFC IB, and hence Id B= (ZB)*. 

Proposition 1.14. Let (y,, . . . , y,) be a finite farnib of differential indeterminates 
over A and let B denote the differential polynomial ring A( yl, . . . , y,}. Then Q is a 
quasi-prime ideal in A if and only if QB is a quasi-prime ideal in B. 

Proof. One direction is clear, since QBflA = Q, so suppose that Q is a quasi-prime 
ideal in A, let P= r(Q), and suppose that F, GE B are such that FG E QB and Fe QB. 
Then there is a finite subset A’ of the set of derivatives 0yj, where 0 E 0, j = 1, . . . , n, 
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such that FG E QA[X] and Fe QA[X]. It follows from Proposition 1.10 and [3, 
Exercise 15, p. 2931 that QA[X] is primary and PA[X] is its radical, so that 
G” E QA[X] for some n ~0 and hence GE PA[X]. Therefore QB is primary and 
r(QB) = PB. Since Pd = Q, it follows from Lemma 1.13 that (T(QB))~ = QB, so that 
by Proposition 1.10, QB is a quasi-prime ideal in B. 

Since the notion of a quasi-prime ideal in a differential ring is a better generaliza- 
tion to differential algebra of the notion of a prime ideal in a commutative ring than 
that of a prime differential ideal, then one must consider the types of differential 
rings which arise when one constructs rings of fractions and quotient rings using 
quasi-prime ideals. In the next section we see that these differential rings are 
reasonably well-behaved. 

2. Differential quotient rings and rings of fractions 

We begin by generalizing suitably the notion of a differential domain to the case 
at hand. We will say that A is a quasi-domain if every zero-divisor in A is nilpotent 
and every non-zero element has some derivative (perhaps of order zero) that is not 
nilpotent. It is immediate from the definition that every differential domain is a 
quasi-domain. The following is an immediate consequence of Proposition 1.10. 

Proposition 2.1. The following are equivalent. 
(1) A is a quasi-domain. 
(2) { 0) is a quasi-prime ideal in A. 
(3) The nilradical N of A is a prime ideal and there are no proper differential 

ideals contained in N. 

The basic results in commutative algebra concerning integral domains generalize 
as follows. 

Proposition 2.2. Q is a quasi-prime ideal in A if and only if A/Q is a quasi-domain. 

Proof. immediate from Propositions 2.1 and 1.12(i). 

Proposition 2.3. If A is a quasi-domain and S a multiplicative subset of A, then 
S-IA is a quasi-domain. 

Proof. Immediate from Propositions 2.1 and l.l2(ii). 

Proposition 2.4. Let (y,, . . . , y,) be a finite family of differential indeterminates 
overA. ThenA{y,,..., y,} is a quasi-domain if and only if A is a quasi-domain. 

Proof. This is immediate from Propositions 2.1 and 1.14. 
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We will say that a differential ideal M in A is quasi-maximal if r(M) is a maximal 
ideal in A and M = r(M), . It is clear that any quasi-maximal ideal is a maximal 
differential ideal (and therefore a quasi-prime ideal), but not every maximal 
differential ideal is quasi-maximal. For example, in the differential ring Q[t] where 
f is an indeterminate over Q, d = (6) and 6t = 1, (0) is a maximal differential ideal 
but is not quasi-maximal. 

To fix terminology, we will call any (not necessarily Noetherian) ring having a 
unique maximal ideal a local ring. (Such a ring is sometimes called a quasi-local ring 
by some authors who reserve the term ‘local’ for the Noetherian case.) 

We will say that A is a q-local ring if A is a local ring whose maximal ideal M 
satisfies M=r(M,) (or equivalently is such that MA is quasi-maximal). Any local 
differential ring (i.e. a local ring whose maximal ideal is differential) is q-local. 

Proposition 2.5. Let Q be a quasi-prime ideal in A and let S = A - r(Q). Then .‘$-‘A 
is q-local. 

Proof. Since r(Q)=P is a prime ideal in A, S-IA is local. Furthermore, the 
maximal ideal S-‘P in S-IA satisfies r((S-‘P),) = f(S-‘PA) = S-‘@A) =S-‘P, 
where the first equality follows from Lemma 1.7, and the second is immediate, so 
that S-IA is q-local. 

If Q is a quasi-prime ideal in A and S=A -r(Q), we will denote by AQ the q-local 
ring S-IA, and A, will be called the q-local ring of A at Q. 

Proposition 2.6. Let U denote the multiplicative set of invertible elements of A. 
Then A is q-focal if and only ifA satisfies the conditions: 

(1) ifx,y~Aaresuchthatx+y~U, theneitherxEUoryEU,and 
(2) if x E A is such that for every n > 0 there exists 19 E 0 such that 0(x”) E U, then 

XE u. 

Proof. It is clear that (1) is equivalent to A being local, and it is not difficult to 
check that (2) is equivalent to the condition MCr(MA) where M=A - U is the 
maximal ideal of A. 

Proposition 2.7. Let S be a saturated multiplicative subset of A (i.e. S satisfies 
xy E S if and only if XE S and y E S). Then S-IA is q-local if and only if S is the 
complement in A of the radical of a quasi-prime ideal in A. 

Proof. Suppose that S-IA is q-local. Let A4 denote the maximal ideal in S-IA, 
SO that M=S-‘P for some prime ideal P in A disjoint from S. Therefore 
S-‘P= r((S-‘P)A) = r(S-lPd) = S-‘r(PA), and since S is saturated, S=A -P= 
A - r(P,). The converse is just Proposition 2.5. 
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We say that A is a quasi-field if every non-unit in A is nilpotent and every non- 
zero element has some derivative (perhaps of order zero) that is not nilpotent. It is 
clear that every differential field is a quasi-field, and that every quasi-field is a 
quasi-domain. Furthermore, every quasi-field is q-local, since the nilradical is then 
the maximal ideal. Note also that the subring of constants of a quasi-field is a quasi- 
field (actually, a field). 

Proposition 2.8. Let I/ denote the set of invertible elements in A and N the 
nilradical of A. The following are equivalent. 

(1) A is a quasi-field. 
(2) (0) is a quasi-maximal ideal in A. 
(3) A satisfies the conditions: 

(i) ForanyxeA, eitherxEI/orxEN. 
(ii) If x is such that for every 0 E 0 there exists n > 0 such that (tJx)“= 0, then 
x=0. 

(4) A has a unique prime ideal and no proper differential ideals. 

Proof. Immediate. 

Proposition 2.9. M is a quasi-maximal ideal in A if and only if A/M is a quasi-field. 

Proof. Suppose first that M is a quasi-maximal ideal in A and that a+M is not 
nilpotent in A/M. Since r(M) is a maximal ideal in A, there exists XEA with 
1 -axe r(M), and hence (1 - ax)“E M for some n >O. Expanding (1 -a-x)“, it 
follows that 1 - ay E M for some y E A, so that a + M is a unit in A/M. Also, if 
a + M is any non-zero element in A/M, then since M = r(M)4, we see that for some 
0 E 0, @a + M) = Ba + M is not nilpotent, so that A/M is a quasi-field. Conversely, 
suppose that A/M is a quasi-field and that a E A - r(M). Then a + M is not nilpotent 
in A/M, so that there is an x E A with 1 - ax EM. It follows that r(M) is a maximal 
ideal in A. Now if a E A -M, then a + M has some derivative that is not nilpotent in 
A/M, so that a E A - r(M)4. Hence M is a quasi-maximal ideal in A. 

If A is q-local and M the unique quasi-maximal ideal in A, then A/M will be 
called the differential residue quasi-field of A. 

Proposition 2.10. If A is a quasi-domain and S 

nilpotent elements in A, then S-IA is a quasi-field. 
the multiplicative set of non- 

Proof. It is clear that every non-unit in S-IA is nilpotent. Moreover, if a/se S-‘A is 
such that for every 19 E 0, &a/s) is nilpotent, then since the nilradical of A is a prime 
ideal and since 

&7/s) = (&a/l) - C (~,)B’(a/s)B”(s/l))(l/s), 
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the sum taken over pairs (0’, 0”) with 8 = 8’8” and B’# 0, it follows that &z/s is 
nilpotent in S-IA, and hence 8a is nilpotent. But every non-zero element in A has 
some derivative which is not nilpotent, so that a=0 and hence a/s=O. 

If A is a quasi-domain and S the multiplicative set of non-nilpotent elements of A, 
we call S-IA the differential quasi-field of quotients of A. We note that the 
canonical differential ring homomorphism h : A dS_‘A is a monomorphism since 
any zero-divisor in A is nilpotent. 

Proposition 2.11. Let A be a quasi-domain and S the set of non-nilpotent elements 
of A. If F is any differential quasi-field and f : A -+ F any differential ring mono- 
morphism, there is a unique differential ring monomorphism $: S-‘A+Fsuch that 
f =f. h. 

Proof. This is immediate, since ifs is any non-nipotent element in A, f(s) is a unit 
in F. For otherwise, f(s) would be nilpotent in F, and hence s would be nilpotent 
in A. 

The preceding results can be interpreted very nicely from a categorical viewpoint. 
To this end, let Qfld denote the category of differential quasi-fields, where the 
morphisms are differential monomorphisms; Qloc the category of differential 
q-local rings, where the morphisms are differential local homomorphisms; Qdom 
the category of differential quasi-domains, where the morphisms are differential 
monomorphisms; and Qdiff the category whose objects are pairs (A, Q) where A is a 
differential ring and Q a quasi-prime ideal in A, where the morphisms 
f: (A, Q)-+(A’, Q’) are differential homomorphisms f: A-+A’ with Q=f -‘(Q’). 
Then consider the diagram of functors 

where U and V are inclusions, and U’ and V’ are defined objectwise by 
U’A = (A, (0)) and V’A = (A,M) where A4 is the quasi-maximal ideal of A. It is clear 
that CJ’U= V’V, and moreover, each of the functors U, U’, V, and V’ has a left 
adjoint. In particular, that U’ has a left adjoint follows from Proposition 2.2, that 
V’ has a left adjoint follows from Proposition 2.5, that V has a left adjoint follows 
from Proposition 2.9, and that U has a left adjoint follows from Propositions 2.10 
and 2.11. The composite of the left adjoints to U and U’, and the composite of the 
left adjoints to V and V’ both provide left adjoints for the functor U’U= V’V by 
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[9, Theorem 1, p. 1011, and therefore they are naturally isomorphic by [9, Corollary 
1, p. 831. Hence we have proved the following. 

Theorem 2.12. Let A be a differential ring and Q a quasi-prime ideal in A. Then the 
differential quasi-field of quotients of A/Q is naturally isomorphic to the differen- 
tial residue quasi-field of AQ. 

As we have seen, differential rings constructed from a given differential ring by 
rings of fractions and quotient rings using quasi-prime ideals behave just as their 
algebraic counterparts, and include a greater variety of differential rings than one 
obtains by restricting only to prime differential ideals. 

The techniques developed in this paper can be applied to other problems in 
differential algebra as well. For example, a very useful technique in commutative 
algebra involves the selection of a maximal element from a given partially ordered 
set, such as the set of ideals of a given commutative ring which are disjoint from a 
multiplicative subset of the ring, the set of local subrings of a given field or the set of 
homomorphisms from subrings of a given field. As we have pointed out, in 
differential algebra, differential ideals which are maximal may fail to be prime 
(hence quasi-prime ideals arise). Similarly, maximal elements in other partially 
ordered sets in differential algebra do not behave exactly as their algebraic counter- 
parts (cf., e.g., [2] or [lo]). It seems quite likely that our results can be applied to 
these other situations as well, but to do so would take us beyond the scope of the 
present paper. 
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